New higher-order compact finite difference schemes for 1D heat conduction equations
نویسندگان
چکیده
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملFully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
Conservation properties of the mass, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discrete equations. Existing finite difference schemes in regular and staggered grid systems are checked for violations of the conservation requirements and a few important discrepancies are pointed out. In particular, it is found that ...
متن کاملVery high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations
This article presents a family of very high-order non-uniform grid compact finite difference schemes with spatial orders of accuracy ranging from 4th to 20th for the incompressible Navier–Stokes equations. The high-order compact schemes on non-uniform grids developed in Shukla and Zhong [R.K. Shukla, X. Zhong, Derivation of high-order compact finite difference schemes for non-uniform grid using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2013
ISSN: 0307-904X
DOI: 10.1016/j.apm.2013.03.026